
JOURNAL OF COMPUTATIONAL PHYSICS 68, 474-484 (1987)

A 3-D Poisson Solver Based on Conjugate Gradients
Compared to Standard Iterative Methods and Its

Performance on Vector Computers

H. KAPITZA AND D. EPPEL

Forschungsxwfrum Geesrhachr,
Posrfach 1160,

D-2054 Geesthncht, Federal Republic of Germany

Received September 30, 1985; revised March 14, 1986

A conjugate gradient method for solving a 3-D Poisson equation in Cartesian unequally
spaced coordinates is tested in concurrence to standard iterative methods. It is found that the
tested algorithm is far superior to Red-Black-SOR with optimal parameter. In the conjugate

gradient method no relaxation parameter is needed, and there are no restrictions on the num-
ber of gridpoints in the three directions. The iteration routine is vectorizable to a large extent
by the compiler of a CYBER 205 without any special preparations. Utilizing some special
features of vector computers it is completely vectorizable with only minor changes in the
code. 7 : 1987 Academic Press, Inc

1. INTRODUCTION

Many numerical models in fluid dynamics require the solution of a Helmholtz
equation for pressure p,

Ap+C.Vp=F (1)

where C and F are space-dependent vector and scalar functions defined by the
specific problem. The discrete forms of the first and second derivatives with respect
to coordinate x appearing in the operators of Eq. (1) are

8P h?P;+, -(hf-hf+,)P,-hf+,P;~l -=
ax hh+l(~i+~,+l) ’

(2)

8% xk pi+, -(h;+hi+t)Pi+hj+lPj~I]
i= ax Mi, I(h, + hi+ 1)

9 (3)

where hi is the distance in x direction between pipI and pi. Both derivatives are
defined at the same point as p,. Using Eqs. (2) and (3) and similar expressions for y
and z Eq. (1) leads to a system of linear equations:

AP, =fd
474

(4)

OO21-9991/87 $3.00
CopyrIght 0 1987 by Academic Press. Inc.
All rights of reproductmn I” any form reserved.

CONJUGATE GRADIENT POISSON SOLVER 415

with the Nx N coefticient matrix A. pd and fd are the discrete representations of p
and F. For three-dimensional problems, N may become very large (N lo4 - 105).

Numerical mathematics offers a variety of algorithms to solve Eq. (4).
Elimination techniques are not suitable for the range of N expected for three-dimen-
sional problems. Very efficient direct solvers utilize fast Fourier transform (FFT).
This restricts the number of gridpoints to powers of 2 (see Wilhelmson and
Ericksen [23]). Another class of methods are iterative techniques, see for instance
the fundamental textbooks of Varga [22], Young [24], Ames [l], or Golub and
van Loan [111. The conjugate gradient technique was first seen as a generalization
of elimination techniques since it has the property of finite termination after N steps
(Hesteness and Stiefel [131). So, for instance, Gaussian elimination is a special con-
jugate gradient technique prescribing the unit vectors in RN as direction vectors for
a new step. In recent years, a revival of the conjugate gradient technique as an
iterative scheme has taken place since by appropriate preconditioning of the matrix
the residual may be forced to small values in the very first steps. Nevertheless, dis-
regarding rounding errors the algorithm is still finite. For conjugate gradient techni-
ques see for instance Daniel [S], Reid [18], Concus, Golub, and O’Leary [7],
Kershaw [15], Axelsson [2], Young and Jea [25], Khosla and Rubin [16].
For preconditioning see, for example, DuPont, Kendall and Rachford [9],
Meijerink and van der Vorst [171, Gustafsson [123, Glowinski, Periaux, and
Pironneau [lo], van der Vorst [21], Behie and Vinsome [6], Behie, Collin, and
Forsyth, Jr. [3]. Some comparisons have been performed with multigrid techniques
(Behie and Forsyth [4, 51) and with direct solvers (Taylor, Hirsh, and
Nadworny [20]) which show very promising results.

In the following sections the algorithms are presented and their different
behaviour when applied to a model problem is shown. In the Appendix a method is
described which permits acceleration of the code on vector computers like the
CDC CYBER 205.

2. ALGORITHMS

One step linear iterative methods for the solution of the general problem

Bx=f (5)

can be written as

x’“+“=Gx’“‘+k, n = 0, 1, 2 ,...) (6)

with arbitrary x . (‘I An equivalent formulation uses a nonsingular splitting matrix Q,

X(n+I)=X(n)-Q-‘(Bx’“‘-f)

= X(n) _ Q-l,.(n)
(7)

476 KAPITZA AND EPPEL

with the residual

r(n) = B-J”‘-f, (8)

Q is connected with G and k by

G=I-Q--‘B,

k=Q--‘f
(9)

Different iterative schemes result from different choices of Q. Equation (6) shows
that for G = 0 the solution is obtained in one step. By Eq. (9) this is equivalent to
Q = B. So, efficient iterative schemes are obtained by choosing Q similar to B but
easily invertible.

2.1. Gauss-Seidel (GS)

Here, B is decomposed into lower triangular matrix B,, diagonal matrix D and
upper triangular matrix B,. Both triangular matrices have zero diagonal elements.

B=B,+D+B,. (10)

Taking

Q=D+BL (11)

results in the iterative formula

xcnfl’= -(D+ BL) -’ B”x(“)+ (D+ BJ’J (12)

2.2. Successive-Over-Relaxation (SOR)

GS is generalized to SOR by introducing a relaxation parameter w which weights
the diagonal. From the decomposition of B,

B=c+B,-
1-W
-D+BB,,

w W

Q is chosen to be

Q=$+B,

(13)

(14)

leading to the SOR iteration formula

The parameter w can be chosen to speed up convergence. Often, o must be
adjusted empirically.

CONJUGATE GRADIENT POISSON SOLVER 477

2.3. Red-BlackSOR (RBSOR)

Both GS and SOR are not vectorizable directly. A vectorizable version of SOR is
found by partitioning the whole field into red and black points similar to a checker-
board. Red points are surrounded (in normal direction) purely by black points and
vice versa. Applying Eq. (15) first on all red points and afterwards on all black
points, a fully vectorizable algorithm is obtained referred to as RBSOR.

2.4. Idealized Generalized Conjugate Gradient (IGCG)

Details of the theory for this method may be taken from Young and Jea [25] or
from Kapitza and Eppel [141. Here only the basic algorithm and its specific
formulation will be given.

For a given symmetric and positive definite matrix Y the ORTHOMIN(s)
version of IGCG can be written as

,p + 1) = .J”) + ;1, p’“‘,

(y(p), Q - ‘BP@))
‘“=(yQ-‘BP’“‘, Q-‘BP’“‘)’

=Q-‘(f-B+‘),

P 3 ‘0) = (Yj’O)
(16)

p’“=6’“‘+ c cI,,,,P,p”~-i),
r=l

c1 ,=-(YQ-lBh”‘J, Q-‘BP”‘)
n,* (yQ-lBp’i) ~-l~~‘i))’ 7

where (a, b) is the dot product of vectors a and 6, and s is the number of old direc-
tion vectors p used to determine the new one (1 d s 6 n). As splitting matrix Q an
incomplete Crout factorization is chosen

Q=L,U,=B+E, (17)

where L, and U, are a lower triangular matrix with unit diagonal and an upper
triangular matrix with diagonal D, respectively. Incomplete factorization retains the
sparse structure of B by explicitly setting all elements of L, and U, to zero which
are also zero in B. So multiplying L, with U,, does not only give B but some
additional error matrix E.

The matrix Y is chosen in a way to simplify the inner products in Eqs. (16)

Y= U;D-‘U, (18)

478 KAPITZA AND EPPEL

where the superscript T denotes transposition. So we can now formulate the special
form of the IGCG-method,

x(“+ 1) =x(“) + Anp’“),

(U,P’, DPL;‘Bp’“‘)
A= (p~,l~p, q&q’

(y,#“’ = (J,p- ‘) - ;1 n-lL;lBp(n-l),

P > (0) = (j(O)

P (k3’“l+j~l c(,,,~;p(“-‘),

(D-‘L;W’“‘, L;‘Bpq
c%=- (pL;lBp”‘, ,Il,pu’)’

(19)

3. MODEL PROBLEM

To compare the behaviour of the different methods for a fixed C (see below) a
Gaussian distribution with tunable amplitude, peak location, and variances,

p = A exp[- a(x - x0)* - b(y - JJ,)~ - c(z - zo)*] (20)

is chosen as analytical solution and inserted into Eq. (1) to determine the function
F. The domain is taken to be [0, lo] x [0, lo] x [0, 1) to reflect the relative
geometrical scale in further applications. The grid was chosen equidistant in x and
y direction, but with a variable gridspacing in z direction to allow for a higher
resolution in the boundary layer. Three different vertical grids are used with 10, 20,
and 26 points, respectively. They are depicted in Fig. 1 together with the
corresponding x scale.

DXIKZ=lOl UXIKZ-201 DXIKZ-261

FIG. 1. Three vertical grid resolutions (10, 20, and 26 levels) together with the horizontal resolution
DA’ (length of abscissa).

CONJUGATE GRADIENT POISSON SOLVER 479

Boundary conditions are prescribed either as Dirichlet type or Neumann type.
Two cases are considered here:

(a) Neumann at z = 0, Dirichlet elsewhere: This case simulates an application
in atmospheric modeling, where the departure of pressure from its hydrostatic value
must be computed assuming this departure being small (or in fact zero) far outside
the central part of the domain.

(b) Dirichlet at z = 1, Neumann elsewhere: This case is used to test the
behaviour of the algorithm when confronted with many Neumann conditions. The
code is constructed such that at least one boundary must be of Dirichlet type.

The parameters in Eq. (20) were chosen such that the peak was not too sharp to
be properly resolved by the grid:

A = 1,

a=b=O.Ol, c=O.l, (21)

x()=y()=5, zo = 0.5.

With a view to atmospheric application where the solution domain is chosen such
that the lowest z coordinate plane coincides with the ground, the vector C in
Eq. (1) may be estimated to have values of order 0.01 so that asymmetries entering
by these gradient terms are considerably smaller than asymmetries caused by
unequally spaced z-gridlines. So C was kept constant,

c = (0.01, 0.01,0.01). (22)

There are two different choices of initial values taken: The first starts from zero, the
second from 0.99 xx, (solution). The latter one is more adequate for real
applications, since there the result of the last time step would be used as initial
guess, which should not differ very much from the result. Convergence is assumed
when the normalized residual E falls below some prescribed value, in this case

II rcn’ II E=j-pj< 10-6,

where

/I x II = &a (24)

is the Euclidean norm.
From Eqs. (19) follows that s previous direction vectors p(j) are necessary to

estimate a new p’“‘. Some experiments were made with varying s. Table I shows the
number of iterations and work units (definition see below) for the 20 x 20 x 20
domain case (a). It is seen that s = 1 gives the minimum number of iterations and
work units. So, for all computations s is set to 1, i.e., only one old direction vector
must be stored.

480 KAPITZA AND EPPEL

TABLE I

Number of Old Direction Vectors S, Number of Iterations N,,,
and Work Units WU for a 20 x 20 x 20 Domain with Initial

Guess x(“) = 0 and Boundary Type (a)

s N,, wu

1 14 325
2 26 658
3 21 588
4 19 578
5 19 620
6 19 659
I 19 695
8 20 771

4. RESULTS

Figure 2 shows the behaviour of GS, RBSOR, and IGCG when applied to a
20 x 20 x 20 domain for cases (a) and (b). E is taken as ordinate, while the abscissa
is in work units, which are defined as the number of floating point multiplications
and divisions per unknown, for clearness divided by 1000. Initial value was 0.99 x x,~
(solution).

Both Figs. 2a and b show the rapid convergence of GS in the first few iterations
followed by a plateau-like behaviour. This is due to the rapid smoothing of high fre-
quencies of the residual, while the low frequencies are treated very poorly (see
Stuben and Trottenberg [191).

RBSOR with optimally chosen parameter shows considerably better results. The
convergence criterion is fulfilled within the admitted range of work units. But, as
can be seen on the graph, the residual is not guaranteed to get smaller in every
iteration step. The curve shows some sort of oscillation.

IGCG, now, beats RBSOR by a factor of about 10. There is no oscillation
because it may be shown that the residual must always get smaller (see Young and
Jea [25]). The difference between cases (a) and (b) is about 10 % for RBSOR and
none for IGCG.

All other problems solved with the three methods show similar results, therefore
they are not displayed as a graph but sampled in Table II (excluding GS since con-
vergence never happened). As seen from Table II in nearly all cases IGCG is faster
than RBSOR by a factor of at least 10. Looking for a functional relation of the
form

Work -N”. (25)

CONJUGATE GRADIENT POISSON SOLVER

CONVERGENCE-TESTS
DIMENSIONS: 20 x 20 x 20 EIOUNORRY-TYPE: 000010

0ISCA:TYPE: I FIRST GUESS: X0 - 0.99 SOL.

WORK UNITS

CONVERGENCE-TESTS
DIflENSIONS: 20 x 20 x 20 BOUNDRRY-TYPE: 111110

0ISCR:TYPE: I FIRST GUESS: X0 - 0.99 SOL.
D
n;

b
LEGEND

0 GS
d pBzgR.

IGCG

0
7 I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
WORK UNITS

FIG. 2. Normalized residual E as fuction of work for cases (a) and (b).

481

.O

482 KAPITZA AND EPPEL

TABLE II

Relaxation Parameter w, Number of Iterations N,, and Work Units WU of RBSOR and IGCG for
Cases (a) and (b), for Different Domains and Different First Guesses .x(“)

RBSOR IGCG

Domain Case p w NI, WU N,, wu

10x10x10
10x10x10
20X20X20
20X20X20
20X20X20
20X20X20
26X26X26
30x30~20

0. 1.89 120 1807 8 191
0. 1.89 176 2647 8 191
0. 1.94 274 4117 14 325
0. 1.94 308 4627 14 325

0.99x, 1.94 176 2647 9 216
0.99x, 1.94 194 2911 8 194

0. 1.95 346 5197 18 414
0. 1.95 276 4147 20 457

where N is the number of unknowns, we may derive from Table II,

aRBSOR = 1.33%

aIGCG z 1.22.

This is to be compared to the analytically derivable numbers for SOR and GS

aGS z 2.00,

aSOR z 1.50

(see, e.g., Ames [1]),

5. CONCLUSIONS

It is shown that IGCG is about 10 times faster than RBSOR. Moreover, IGCG
does not contain a relaxation parameter like RBSOR. Figure 3 shows that o has to
be known to at least two and preferably three digits to guarantee optimum perfor-
mance of RBSOR, a knowledge which may be difficult to obtain in real
applications. Another advantage of IGCG is its independence on specific dimension
configurations for optimal performance contrary to FFT and multigrid.

Multigrid is reported to be optimal in the sense that a z 1 in Eq. (25), at least in
2-D cases (Stiiben and Trottenberg [19]). We did not make any tests with
multigrid solvers, but Behie and Forsyth [4, 53 reported that conjugate
gradient methods are competitive up to dimensions of about 33 x 33 x 33. Another
advantage is perhaps the rather simple coding compared to multigrid codes.

In summary IGCG, apart from its superior speed, has several advantages com-
pared to standard algorithms. It might be less efficient than the fastest Poisson

CONJUGATE GRADIENT POISSON SOLVER

SENSITIVITY-TESI

483

00

FIG. 3. Number of iterations for RBSOR as function of relaxation parameter o.

solvers available, but it is easy to apply and offers the user any freedom in defining
his domain.

The algorithm is coded for Cartesian coordinates and, with regard to atmospheric
application, also for terrain-following coordinates, both in 2- or 3-dimensional ver-
sions. Remarks on possible improvements of the code for vector computers are
described in the appendix for special domain configurations.

APPENDIX: SOME REMARKS ON VECTORIZABILITY ON A CYBER 205

The code has been implemented on the CDC CYBER 205 at the Klimarechen-
zentrum (= climate computing center) in Hamburg. Each iterative sweep
(Eqs. (19)) consists of

(a) multiplication of constants with vectors and adding the result to vectors,
(b) multiplication of matrices with vectors,
(c) scalar products of vectors,
(d) inverting of triangular matrices.

The only operation not auto-vectorizable by the compiler is (d). But a simple
idea leads to considerable improvement of the performance of the whole code:

The triangular matrices L and U are the result of the incomplete factorization of
B. The points in the vector x are ordered such that in the matrix B the largest
elements are concentrated near the main diagonal. So, it is tempting to perform the

484 KAPITZA AND EPPEL

incomplete factorization for the tridiagonal part of B only. This leads to triangular
matrices L and U which have only one side band. Since this “truncated” form of L
and U is a worse factorization than the original one, it is expected that the iteration
count will increase. But this is more than compensated by the ability of the
CYBER 205 to handle recursive operations with a lag of 1 by “STACKLIB-
Routines.” This procedure improved the performance by a factor of 2 for our test
problem. However, it must be emphasized that this trick works only successfully if
one direction of the 3-D domain has a much smaller space increment than the other
ones (e.g., the z direction for atmospheric models should have this property) and if
at the same time the points of the domain are ordered running fastest into this
direction. This idea should be applicable to other vector machines. The documented
FORTRAN program code is available from the authors.

ACKNOWLEDGMENT

We want to express our gratitude to Professor Dr. J. Hauser who influenced our work with many
fruitful discussions.

REFERENCES

1. W. F. AMES, Numerical Methods for Partial D$erential Equations (Academic Press, New York/
San Francisco, 1977).

2. 0. AXELSSON, Linear Algebra Its Appl. 29, 1 (1980).
3. A. BEHIE, D. COLLINS, ANU P. A. FORSYTH, JR., Comput. Methods Appl. Mech. Eng. 42, 287 (1984).
4. A. BEHIE AND P. A. FORSYTH, JR., Appl. Math. Comput. 13, 229 (1983).
5. A. BEHIE AND P. A. FORSYTH, JR., IMA J. Num. Anal. 3, 41 (1983).
6. A. BEHIE ANU P. K. W. VINSOME, Sot. Petr. Eng. J. 22, 658 (1982).
7. P. CONCUS, G. H. GOLUB, AND D. P. O’LEARY, Computing 19, 321 (1978).
8. J. W. DANIEL, SIAM J. Numer. Anal. 4, 10 (1967).
9. T. DUPONT, R. P. KENDALL, AND H. H. RACHFORV, JR., SIAM J. Numer. Anal. 5, 559 (1968).

10. R. GLOWINSKI, J. PERIAUX, AND 0. PIRONNEAU, Appl. Math. Modelling 4, 187 (1980).
11. G. H. GOLUB, C. F. VAN LOAN, Matrix Computations (North Oxford Academic, Oxford, 1983).
12. 1. GUSTAFSSON, BIT 18, 142 (1978).
13. M. R. HESTENES AND E. STIEFEL, J. Res. Nut. Bur. Stand. 49, 409 (1952).
14. H. KAPITZA AND D. EPPEL, Forschungszentrum Geesthacht External Report No. 85/E/23, D-2054

Geesthacht, Federal Republic Germany, 1985.
15. D. S. KERSHAW, J. Comput. Phys. 26, 43 (1978).
16. P. K. KHOSLA AND S. G. RUBIN, Comput. Fluids 9, 109 (1981).
17. J. A. MEIJERINK AND H. A. VAN DER VORST, Math. Comput. 31, 148 (1977).
18. J. K. REIV, SIAM J. Numer. Anal. 9, 325 (1972).
19. K. STUBEN AND U. TROTTENBERG, in Lecture Notes in Mathematics, vol. 960, edited by A. Dold and

B. Eckmann, (Springer, Berlin/Heidelberg/New York, 1982), p. 1.
20. T. D. TAYLOR, R. S. HIRSH, AND M. M. NADWORNY, Comp. Fluids 1, 1 (1984).
21. H. A. VAN VER VORST, J. Comput. Phys. 44, 1 (1981).
22. R. S. VARGA, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, N. J., 1962).
23. R. B. WILHELM~~N AND J. H. ERICKSEN, J. Comput. Phys. 25, 319 (1977).
24. D. M. YOUNG, Iterative Solution of Large Linear Systems (Academic Press, New York/San Fran-

cisco, 1971).
25. D. M. YOUNG AND K. C. JEA, Linear Algebra Its Appl. 34, 159 (1980).

